
Software life cycle, high assurance & types



Stages in software development

Requirements

Specification
Design

Implementation

Validation

Maintenance



Waterfall model versus agile methods
Photo by BloodLight - http://flic.kr/p/5A38zp Photo by denn - http://flic.kr/p/bhu2C

http://flic.kr/p/5A38zp
http://flic.kr/p/bhu2C


Waterfall model

Requirements

Specification

Design

Implementation

Validation

Maintenance



Agile methods

Requirements

Specification Design

Implementation

Validation
Maintenance



Different projects require different methods

• Implementing an AES (Advanced Encryption Standard) component


‣ Requirements and specification is not going to change 
significantly


‣ Predictability and correctness are paramount

• Implementing a social media website


‣ Requirements are initially very vague 


‣ Web users are well accustomed to half-baked features and a little 
downtime 



Again, we need to be flexible

• We need to be able to trade quality for reduced effort

• We need to be able to trade predictability for agility



The scope of this course

Requirements

Specification
Design

Implementation

Validation

Maintenance



Logical program properties

• Our tool of choice for specifications


• They are flexible


1. They can directly be used for testing


2. They can directly be used for formal verification


• They are fundamentally connected to types



Type-driven development

• We will use types for all four stages of software development


1. Specification — types can encode arbitrary properties


2. Design — types structure code


3. Implementation — types guide and sometimes imply implementations


4. Validation — types can be automatically checked



Types provide flexibility

• Singleton types are perfectly precise

n : SInt(n)

• Bit-size types track an important implementation constraint

n : BInt(w)

• Types as we know them

n : Int

• Dynamic types

n : Dynamic



By making types more precise...

• We refine the specification


• The type checker requires us to justify our implementation in more detail 

We gain quality, but also have 
to spend more effort



By making types less precise...

• We simplify experimentation


• We will have to perform more testing, or accept defects 

We avoid fixing too many 
details of the specification



Lambda calculus in a nutshell



Haskell

• A practical, strongly-typed functional programming language


‣ Widely used in research, industry & education


‣ Mature, highly optimising compiler with interactive environment


‣ Over thousands of open-source libraries and tools


• Named after the logician Haskell B. Curry

http://haskell.org/

http://haskell.org


Why Haskell?

• Functional languages are based on the lambda calculus


‣ Semantics of programs is fairly precisely defined


‣ This simplifies formal reasoning about these programs


• Functional languages can dramatically increase productivity


‣ Factor of four has been cited for Erlang versus C++


• Haskell has a very sophisticated type system


• Haskell has controlled effects


